Mobile QR Code QR CODE
Export citation EndNote

References

1 
Alonso, C., Castellote, M., and Andrade, C. (2002) Chloride Threshold Dependence of Pitting Potential of Reinforcements. Electrochimica Acta 47(21), 3469-3481.DOI
2 
Angst, U., Elsener, B., Larsen, C. K., and Vennesland, Ø. (2009) Critical Chloride Content in Reinforced Concrete—A Review. Cement and Concrete Research 39(12), 1122-1138.DOI
3 
Chang, P. K., Peng, Y. N., and Hwang, C. L. (2001) A Design Consideration for Durability of High-Performance Concrete. Cement and Concrete Composites 23(4-5), 375-380.DOI
4 
Deby, F., Carcasses, M., and Sellier, A. (2009) Toward a Probabilistic Design of Reinforced Concrete Durability: Application to a Marine Environment. Materials and Structures, 42, 1379-1391.DOI
5 
Helland, S. (2013) Design for Service Life: Implementation of Fib Model Code 2010 Rules in the Operational Code ISO 16204. Structural Concrete 14(1), 10-18.DOI
6 
Hussain, S. E., Al-Musallam, A., and Al-Gahtani, A. S. (1995) Factors Affecting Threshold Chloride for Reinforcement Corrosion in Concrete. Cement and Concrete Research 25(7), 1543-1555.DOI
7 
Hwang, J. W., and Kwon, S. J. (2024) Temperature-Dependent Diffusion Coefficient of Chloride Ion in UAE Concrete. Journal of the Korea Institute for Structural Maintenance and Inspection 28(4), 48-54.DOI
8 
Jang, S. Y., Karthick, S., and Kwon, S. J. (2017) Investigation on Durability Performance in Early Aged High‐Performance Concrete Containing GGBFS and FA. Advances in Materials Science and Engineering 2017(1), 3214696.DOI
9 
Jang, S. Y., Yoon, Y. S., and Kwon, S. J. (2018) Derivation of Optimum GGBFS Replacement with Durability Design Parameters. Journal of the Korean Recycled Construction Resources Institute 6(1), 36-42.DOI
10 
Khan, M. U., Ahmad, S., and Al-Gahtani, H. J. (2017) Chloride‐Induced Corrosion of Steel in Concrete: An Overview on Chloride Diffusion and Prediction of Corrosion Initiation Time. International Journal of Corrosion 2017(1), 5819202.DOI
11 
Kwon, S. J., Na, U. J., Park, S. S., and Jung, S. H. (2009) Service Life Prediction of Concrete Wharves with Early-Aged Crack: Probabilistic Approach for Chloride Diffusion. Structural Safety 31(1), 75-83.DOI
12 
Lakshmi, A., Pandit, P., Nayak, G., Bhagwat, Y., and Kumar, S. (2024) Influence of Corrosion-Based Section Loss on Morphology and Tensile Capacity of Pre-Stressing Strands. Journal of Structural Integrity and Maintenance, 9(1).DOI
13 
Lee, S. H., and Kwon, S. J. (2012) Experimental Study on the Relationship Between Time-Dependent Chloride Diffusion Coefficient and Compressive Strength. Journal of the Korea Concrete Institute 24(6), 715-726.DOI
14 
Li, K., Zhang, D., Li, Q., and Fan, Z. (2019a) Durability for Concrete Structures in Marine Environments of HZM Project: Design, Assessment and Beyond. Cement and Concrete Research 115, 545-558.DOI
15 
Li, K., Zhao, F., and Zhang, Y. (2019b) Influence of Carbonation on the Chloride Ingress into Concrete: Theoretical Analysis and Application to Durability Design. Cement and Concrete Research 123, 105788.DOI
16 
Liu, Q., Sun, L., Zhu, X., Xu, L., and Zhao, G. (2022) Chloride Transport in the Reinforced Concrete Column under the Marine Environment: Distinguish the Atmospheric, Tidal- Splash and Submerged Zones. Structures 39, 365-377.DOI
17 
Luping, T., and Gulikers, J. (2007) On the Mathematics of Time-Dependent Apparent Chloride Diffusion Coefficient in Concrete. Cement and Concrete Research 37(4), 589-595.DOI
18 
Nogueira, C. G., and Leonel, E. D. (2013) Probabilistic Models Applied to Safety Assessment of Reinforced Concrete Structures Subjected to Chloride Ingress. Engineering Failure Analysis 31, 76-89.DOI
19 
Park, J. S., Yoon, Y. S., and Kwon, S. J. (2017) Strength and Resistance to Chloride Penetration in Concrete Containing GGBFS with Ages. Journal of the Korea Concrete Institute 29(3), 307-314.DOI
20 
Saassouh, B., and Lounis, Z. (2012) Probabilistic Modeling of Chloride-Induced Corrosion in Concrete Structures using First-And Second-Order Reliability Methods. Cement and Concrete Composites 34(9), 1082-1093.DOI
21 
Shakouri, M., and Trejo, D. (2018) A Study of the Factors Affecting the Surface Chloride Maximum Phenomenon in Submerged Concrete Samples. Cement and Concrete Composites 94, 181-190.DOI
22 
Shi, X., Xie, N., Fortune, K., and Gong, J. (2012) Durability of Steel Reinforced Concrete in Chloride Environments: An Overview. Construction and Building Materials 30, 125-138.DOI
23 
So, H. S., Choi, S. H., Seo, C. S., Seo, K. S., and So, S. Y. (2014) Influence of Temperature on Chloride Ion Diffusion of Concrete. Journal of the Korea Concrete Institute 26(1), 71-78.DOI
24 
Thomas, M. D., and Bamforth, P. B. (1999) Modelling Chloride Diffusion in Concrete: Effect of Fly Ash and Slag. Cement and Concrete Research 29(4), 487-495.DOI
25 
Val, D. V., and Trapper, P. A. (2008) Probabilistic Evaluation of Initiation Time of Chloride-Induced Corrosion. Reliability Engineering & System Safety 93(3), 364-372.DOI
26 
Violetta, B. (2002) Life-365 Service Life Prediction Model. Concrete International 24(12), 53-57.URL
27 
Wang, C. (2021) Explicitly Assessing the Durability of RC Structures Considering Spatial Variability and Correlation. Infrastructures 6(11), 156.DOI
28 
Yang, K. H., Kwon, S. J., Hwang, J. W., and Yoon, Y. S. (2023) Temperature Effect on Strength and Chloride Migration in Nuclear Power Plant Concrete. Construction and Building Materials 405, 133345.DOI
29 
Yoon, Y. S., Cho, S. J., and Kwon, S. J. (2019) Prediction Equation for Chloride Diffusion In Concrete Containing GGBFS Based on 2-Year Cured Results. Journal of the Korea Institute for Structural Maintenance and Inspection 23(2), 1-9.DOI