Mobile QR Code QR CODE
Export citation EndNote

References

1 
ACI Committee 222 (2019) Guide to Protection of Metals in Concrete Against Corrosion (ACI 222R-19). Farmington Hills, MI; American Concrete Institute (ACI).URL
2 
ACI Committee 318 (2019) Building Code Requirements for Structural Concrete (ACI 318R-19) (Reapproved 2022). Farmington Hills, MI; American Concrete Institute (ACI).URL
3 
Ann, K. Y., Ahn, J. H., and Ryou, J. S. (2009) The Importance of Chloride Content at the Concrete Surface in Assessing the Time to Corrosion of Steel in Concrete Structures. Construction and Building Materials 23(1), 239-245.DOI
4 
CEB (1990) Model Code for Concrete Structures. Lausanne, Switzerland; International Federation for Structural Concrete (fib), Comite Euro-International du Beton (CEB).URL
5 
CEN (2013) Concrete–Part 1: Specification, Performance, Production And Conformity (European standard EN 206-1). Belgium, Brussels: European Committee for Standardization (CEN).URL
6 
Fjendbo, S., Sørensen, H. E., De Weerdt, K., Jakobsen, U. H., and Geiker, M. R. (2022) Correlating the Development of Chloride Profiles and Microstructural Changes in Marine Concrete up to Ten Years. Cement and Concrete Composites 131, 104590.DOI
7 
Gao, Y. H., Zhang, J. Z., Zhang, S., and Zhang, Y. R. (2017) Probability Distribution of Convection Zone Depth of Chloride in Concrete in a Marine Tidal Environment. Construction and Building Materials 140, 485-495.DOI
8 
Jang, S. Y., Karthick, S., and Kwon, S. J. (2017) Investigation on Durability Performance in Early Aged High‐Performance Concrete Containing GGBFS and FA. Advances in Materials Science and Engineering 2017(1), 3214696.DOI
9 
Jang, S. Y., Yoon, Y. S., and Kwon, S. J. (2018) Derivation of Optimum GGBFS Replacement with Durability Design Parameters. Journal of the Korean Recycled Construction Resources Institute 6(1), 36-42. (In Korean)DOI
10 
JSA (2019) Ready-mixed Concrete (JIS A 5308). Tokyo, Japan; Japanese Standards Association (JSA), Japanese Industrial Standard (JIS). (In Japanese)URL
11 
Jung, J., Min, J., Lee, B., and Lee, J. S. (2022) Properties on the Airborne Chlorides of Offshore Bridges on the Western/ Southern Coast in South Korea. Journal of the Korea Institute for Structural Maintenance and Inspection 26(2), 59-67. (In Korean)DOI
12 
Kassir, M. K., and Ghosn, M. (2002) Chloride-Induced Corrosion of Reinforced Concrete Bridge Decks. Cement and Concrete Research 32(1), 139-143.DOI
13 
KATS (2016) Portland Cement (KS L 5201). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)URL
14 
KATS (2017a) Standard Test Method for Acid-soluble Chloride in Mortar and Concrete (KS F 2714). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)URL
15 
KATS (2017b) Standard Test Method for Water-soluble Chloride in Mortar and Concrete (KS F 2715). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)URL
16 
KATS (2018) Fly ash (KS L 5405). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)URL
17 
KATS (2020) Ground granulated blast - furnace slag for use in concrete (KS F 2563). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)URL
18 
KCI (2022a) Durability Design Standard for Concrete Structure (KDS 14 20 40), Structural Concrete Design Code and Commentary. Seoul, Korea, Korea Concrete Institute (KCI). (In Korean)URL
19 
KCI (2022b) Details of Reinforcement for Concrete Structures (KDS 14 20 50), Structural Concrete Design Code and Commentary. Seoul, Korea, Korea Concrete Institute (KCI). (In Korean)URL
20 
KCI (2022c) Normal Concrete (KCS 14 20 10), Structural Concrete Design Code and Commentary. Seoul, Korea, Korea Concrete Institute (KCI). (In Korean)URL
21 
Lee, H. S., and Kwon. S. J. (2017) Analysis Technique on Time-Dependent PDF (Probability of Durability Failure) Considering Equivalent Surface Chloride Content. Journal of The Korea Institute for Structural Maintenance and Inspection 21(2), 46-52. (In Korean)DOI
22 
Lee, H. W. Shin, G. C., and Kwon, S. J. (2024) Strength and Carbonation Characteristics in OPC Concrete under Long-Term Exposure Conditions in Various Sea Environments. Journal of The Korea Institute for Structural Maintenance and Inspection 28(1), 53-60. (In Korean)DOI
23 
Liu, P., Yu, Z., Lu, Z., Chen, Y., and Liu, X. (2016) Predictive Convection Zone Depth of Chloride in Concrete under Chloride Environment. Cement and Concrete Composites 72, 257-267.DOI
24 
Liu, Q., Sun, L., Zhu, X., Xu, L., and Zhao, G. (2022) Chloride Transport in the Reinforced Concrete Column under the Marine Environment: Distinguish the Atmospheric, Tidal-Splash and Submerged Zones. Structures 39, 365-377.DOI
25 
Min, J., and Lee, J. S. (2021) Correlation Analysis between Airborne and Penetrated Chlorides into Concrete on the West Coast of Korea. Journal of the Korea Concrete Institute 33(1), 3-9. (In Korean)DOI
26 
Park, S. K., and Kwon, S. J. (2021) Service Life Variation Considering Increasing Initial Chloride Content and Characteristics of Mix Proportions and Design Parameters. Journal of the Korean Recycled Construction Resources Institute 9(3), 236-245. (In Korean)DOI
27 
Roy, S. K., Chye, L. K., and Northwood, D. O. (1993) Chloride Ingress in Concrete as Measured by Field Exposure Tests in the Atmospheric, Tidal and Submerged Zones of a Tropical Marine Environment. Cement and Concrete Research 23(6), 1289-1306.DOI
28 
Song, H. W., Lee, C. H., and Ann, K. Y. (2008) Factors Influencing Chloride Transport in Concrete Structures Exposed to Marine Environments. Cement and Concrete Composites 30(2), 113-121.DOI
29 
Song, H. W., Shim, H. B., Petcherdchoo, A., and Park, S. K. (2009) Service Life Prediction of Repaired Concrete Structures under Chloride Environment Using Finite Difference Method. Cement and Concrete Composites 31(2), 120-127.DOI
30 
Yoon, Y. S., Jeong, G. C., and Kwon, S. J. (2022) The Comparison of Apparent Chloride Diffusion Coefficients in GGBFS Concrete Considering Sea Water Exposure Conditions. Journal of the Korea Institute for Structural Maintenance and Inspection 26(2), 18-27.DOI
31 
Zhao, Y. X., Chen, C., Gao, X. J., and Jin, W. L. (2013) Seasonal Variation of Surface Chloride Ion Content and Chloride Diffusion Coefficient in a Concrete Dock. Advances in Structural Engineering 16(2), 395-403.DOI
32 
Zhou, S. (2014) Modeling Chloride Diffusion in Concrete with Linear Increase of Surface Chloride. ACI Materials Journal 111(5), 483.URL