Mobile QR Code QR CODE
Export citation EndNote

References

1 
Andrade, C., Merino, P., Novoa, X. R., Perez, M. C., and Solar, L. (1995) Passivation of Reinforcing Steel in Concrete. Materials Science Forum, 192-194.URL
2 
Atkins, M., Glasser, F. P., and Kindness, A. (1991) Cement Hydrate Phases: Solubility at 25 °C. Cement and Concrete Research 22(2), 241-246.DOI
3 
Bothe Jr., J. V., and Brown, P. W. (2003) PhreeqC Modeling of Friedel’s Salt Equilibria at 23±1 °C. Cement and Concrete Research 34(6), 1057-1063.DOI
4 
Breugel, K. V. (1991) Simulation of Hydration and Formation of Structures in Hardening Cement-Based Materials. Ph. D Thesis, TU Delft, The Netherlands.URL
5 
De Weerdt, K., Colombo, A., Coppola, L., Justnes, H., and Geiker, M. R. (2015) Impact of the Associated Cation on Chloride Binding of Portland Cement Paste. Cement Concrete Research 68, 196-202.DOI
6 
Eijk, R. J. V., and Brouwers, H. J. H. (2000) Prediction of Hydroxyl Concentrations in Cement Pore Water using a Numerical Cement Hydration Model. Cement and Concrete Research 30, 1801-1806.DOI
7 
Glasser, F. P., Kindness, A., and Stronach, S. A. (1999) Stability and Solubility Relationships in AFm Phase: Part I. Chloride, Sulfate and Hydroxide. Cement and Concrete Research 29(6), 861-866.DOI
8 
Haas, J. (2012) Etude Expérimentale et Modélisation Thermodynamique du Système CaO-SiO2-(Al2O3)-H2O. PhD Thesis, Université de Bourgogne, Dijon, France.URL
9 
Hansson, C, M, Frølund, T., and Markussen, J. B. (1985) The Effect of Chloride Cation Type on the Corrosion of Steel in Concrete by Chloride Salts. Cement and Concrete Research 15, 65-73.DOI
10 
Hirao, H., Yamada, K., Takahashi, H., and Zibra, H. (2005) Chloride Binding of Cement Estimated by Binding Isotherm of Hydrates. Journal of Advanced Concrete Technology 3(1), 77-84.DOI
11 
Hosokawa, Y., Yamada, K., Johannesson, B. F., and Nilsson, L.-O. (2005) Reproduction of Chloride Ion Binding in Hardened Cement Paste Using Thermodynamic Equilibrium Models. Taiheiyo Cement Kenkyu Hokoku, Japan, 151, 1-12.URL
12 
Ishida, T., Miyahara, S., and Maruya, T. (2008) Chloride Binding Capacity of Mortars Made with Various Portland Cements and Mineral Admixtures. Journal of Advanced Concrete Technology 6(2), 287-301.DOI
13 
Labbez, C., Nonat, A., Pochard, I., and Jönsson B. (2007) Experimental and Theoretical Evidence of Overcharging of Calcium Silicate Hydrate. Journal of Colloid and Interface Science 309, 303-307.DOI
14 
Lide, D. R., and Pourbaix, M. (1971) Pitting Potentials versus pH. Corrosion 27, 495.URL
15 
Liu, J., Ou, G., Qiu, Q., Chen, X., Hong, J., and Xing, F. (2017) Chloride Transport and Microstructure of Concrete with / without Fly Ash under Atmospheric Chloride Condition. Construction and Building Materials 146(15), 493-501.DOI
16 
Masel, R. I. (1996) Principles of Adsorption and Reaction on Solid Surfaces. John Wiley and Sons.URL
17 
Mcpolin, D. O., Basheer, P. A. M, and Long, A. E. (2009) Carbonation and pH in Mortars Manufactured with Supplementary Cementitious Materials. Journal of Materials in Civil Engineering, ASCE 21(5), 217-225.DOI
18 
Monteny, J., Vincke, E., Beeldens, A., and Belie, N. D. (2000) Chemical, Microbiological, and In-situ Test Methods for Biogenic Sulfuric Acid Corrosion of Concrete. Cement and Concrete Research 30, 623-634.DOI
19 
Muthulingam, S., and Rao, B. N. (2016) Chloride Binding and Time Dependent Surface Chloride Content Models for Fly Ash Concrete. Frontiers of Structural and Civil Engineering 10, 112-120.DOI
20 
Nielsen, E. P., Herfort, D., and Geiker, M. R. (2005) Binding of Chloride and Alkalis in Portland Cement Systems. Cement and Concrete Research 35, 117-123.DOI
21 
Nielsen, E. P., Herfort, D., Geiker, M. R., and Hooton, R. D. (2003) Effect of Solid Solutions of AFm Phases on Chloride Binding, Proceeding of the 11th International Congress on the Chemistry of Cement, Durban, South Africa.URL
22 
Plusquellec, G, and Nonat, A. (2016) Interactions between Calcium Silicate Hydrate, C-S-H, and Calcium Chloride, Bromide and Nitrate. Cement Concrete Research 90, 89-96.DOI
23 
Sirisawat, I.. Saengsoy, W., Baingam, L., Krammart, P., and Tangtermsirikul, S. (2014) Durability and Testing of Mortar with Interground Fly Ash and Limestone Cements in Sulfate Solutions. Construction and Building Materials 64(14), 39-46.DOI
24 
Sumranwanich, T., and Tangtermsirikul, S. (2004) A Model for Predicting Time-deendent Chloride Binding Capacity of Cement-Fly Ash Cementitious System. Materials and Structures 37, 387-396.DOI
25 
Taylor, H. F. W. (1987) A Method for Predicting Alkali Ion Concentrations in Cement Pore Solutions. Advanced Cement Research 1, 5-16.DOI
26 
Thomas, M. D. A., Hooton, R. D., Scott, A., and Zibara, H. (2012) The Effect of Supplementary Cementitious Materials on Chloride Binding in Hardened Cement Paste. Cement and Concrete Research 42, 1-7.DOI
27 
Tritthart, J. (1989) Chloride Binding in Cement - II. The Influence of the Hydroxide Concentration in the Pore Solution of Hardened Cement Paste on Chloride Binding. Cement Concrete Research 19, 683-691.DOI
28 
Yamaguchi, G., and Takagi, S. (1969), The Anlaysis of Portland Cement Clinker. Proceedings of the 5th International Symposium on the Chemistry of Cement, 1, Japan, 181-218.URL
29 
Yoon, I. S. (2016) Analysis on Adsorption Rate and Mechanism on Chloride Adsorption Behavior with Cement Hydrates. Journal of the Korea Concrete Institute 27(1), 85-92. (In Korean).DOI
30 
Yoon, I. S. (2019) Simple Modeling to Estimate Water Permeability Coefficient of Cementitious Materials. Journal of the Korea Concrete Institute 31(2), 165-172. (In Korean).DOI
31 
Zibara, H. (2001) Binding of External Chlorides by Cement Pastes. Ph D Thesis, University of Toronto, Toronto, Canada.URL