Mobile QR Code QR CODE
Export citation EndNote

References

1 
ACI Committee 213 (2014) Guide for Structural Lightweight- Aggregate Concrete (ACI 213R-14). Farmington Hills, Michigan, USA: American Concrete Institute.URL
2 
ACI Committee 318 (2019) Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary. Farmington Hills, Michigan, USA: American Concrete Institute.URL
3 
ASTM (1997) Standard Test Methods for Flexural Toughness and First Crack Strength of Fibre Reinforced Concrete (ASTM C1018-97). Pennsylvania, USA: ASTM International.URL
4 
ASTM (2012) Standard Test Methods for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading)(ASTM C1609/C1609M-12). Pennsylvania, USA: ASTM International.URL
5 
Campione, G., Miraglia, N., and Papia, M. (2001) Mechanical Properties of Steel Fibre Reinforced Lightweight Concrete with Pumice Stone or Expanded Clay Aggregates. Materials and Structures 34(4), 201-210.DOI
6 
CEB-FIP (2013) fib Model Code for Concrete Structures 2010 (fib 2010). Lausanne, Switzerland; International Federation for Structural Concrete (fib), Comite Euro-International du Beton (CEB).URL
7 
CEN (2005) Test Method for Metallic Fibre Concrete - Measuring the Flexural Tensile Strength (Limit of Proportionality (LOP), Residual) (EN 14651:2005). London, UK; European Committee for Standardization (CEN), British Standards Institute (BSI).URL
8 
Chandra, S., and Berntsson, L. (2003) Lightweight Aggregate Concrete: Science, Technology, and Applications. USA: Noyes Publications.URL
9 
Choe, G. C., Kim, G. Y., Kim, H. S., Hwang, E. C., and Nam, I. S. (2020) Mechanical Properties of Amorphous Steel Fiber Reinforced High Strength Concrete Exposed to High Temperature. Journal of the Korea Concrete Institute 32(1), 19-26. (In Korean)DOI
10 
Choi, S. J., Yang, K. H., Sim, J. I., and Choi, B. J. (2014) Direct Tensile Strength of Lightweight Concrete with Different Specimen Depths and Aggregate Sizes. Construction and Building Materials 63, 132-141.DOI
11 
Hassanpour, M., Shafigh, P., and Mahmud, H. B. (2012) Lightweight Aggregate Concrete Fiber Reinforcement-A Review. Construction and Building Materials 37, 452-461.DOI
12 
KATS (2021) Standard Test Method for Density of Structural Light Weight Concrete (KS F 2462). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korean Standards Association (KSA). (In Korean)URL
13 
KATS (2022a) Test Method for Concrete Slump (KS F 2402). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korean Standards Association (KSA). (In Korean)URL
14 
KATS (2022b) Test Method for Compressive Strength of Concrete (KS F 2405). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korean Standards Association (KSA). (In Korean)URL
15 
KCI (2022) Concrete Construction Standard Specifications (KCS 14 20 00). Seoul, Korea; Korea Concrete Institute (KCI). (In Korean)URL
16 
KCI (2022) Korean Construction Specification: Light Weight Aggregate Concrete (KCS 14 20 20). Sejong, Korea: Ministry of Land, Infrastructure and Transport (MOLIT), Korea Concrete Institute (KCI). (In Korean)URL
17 
KCI (2021) Design Standard of Reinforced Concrete (KDS 14 20 00). Sejong, Korea: Ministry of Land, Infrastructure and Transport (MOLIT), Korea Concrete Institute (KCI). (In Korean)URL
18 
Kim, H. Y., Yang, K. H., and Lee, H. J. (2023) Toughness Performance of LWAC Reinforced with Steel Fibers. ACI Materials Journal 120(5), 3-13.URL
19 
Kim, H. Y., Yang, K. H., Lee, H. J., Kwon, S. J., and Wang, X. Y. (2024) Flexural Residual Strength of Lightweight Concrete Reinforced with Micro-Steel Fibers. ACI Materials Journal 121(1), 93-104.DOI
20 
Lee, H. J. (2023) Generalized Models for Assessing Toughness of Lightweight Aggregate Concrete Reinforced with Micro- Steel Fibers. Ph.D. Thesis. Kyonggi University.URL
21 
Lee, H. J., and Yang, K. H. (2023) Compressive and Flexural Toughness Indices of Lightweight Aggregate Concrete Reinforced with Micro-Steel Fibers. Construction and Building Materials 401, 1-11.DOI
22 
Lee, H. J., Kim, S., Kim, H. Y., Mun, J. H., and Yang, K. H. (2022) Empirical Equation for Mechanical Properties of Lightweight Concrete Developed using Bottom Ash Aggregates. International Journal of Concrete Structures and Materials 16(4), 377-386.DOI
23 
Lee, H. J., Yang, K. H., Kim, H. Y., and Lee, Y. J. (2023) Evaluation of Compressive Performance of Lightweight Aggregate Concrete Reinforced with Micro-Steel Fibers. Journal of the Architectural Institute of Korea 39(5), 181-187. (In Korean)DOI
24 
Nahhab, A. H., and Ketab, A. K. (2022) Influence of Content and Maximum Size of Light Expanded Clay Aggregate on the Fresh, Strength, and Durability Properties of Self-Compacting Lightweight Concrete Reinforced with Micro Steel Fibers. Construction and Building Materials 233, 1-14.DOI
25 
Yang, K. H., and Ashour, A. F. (2015) Modification Factor for Lightweight Concrete Beams. ACI Structural Journal 112(4), 485-492.DOI
26 
Yang, K. H., Kim, H. Y., and Lee, H. J. (2022) Mechanical Properties of Lightweight Aggregate Concrete Reinforced with Various Steel Fibers. International Journal of Concrete Structures and Materials 16(6), 841-854.DOI