Mobile QR Code QR CODE
Export citation EndNote

References

1 
ACI Committee 239 (2012) Ultra-High Performance Concrete. ACI Fall Convention. Toronto, Ontario, Canada; 2012. Farmington Hills, MI; American Concrete Institute (ACI).URL
2 
Asadi, I., Shafigh, P., Hassan, Z. F. B. A., and Mahyuddin, N. B. (2018) Thermal Conductivity of Concrete–A Review. Journal of Building Engineering 20, 81-93.DOI
3 
ASTM C1437-13 (2013) Standard Test Method for Flow of Hydraulic Cement Mortar. West Conshohocken, PA; ASTM International. 1-2.URL
4 
ASTM C150-07 (2007) Standard Specification for Portland Cement. West Conshohocken, PA; ASTM International. 1-8.URL
5 
ASTM C1856 (2024) Standard Practice for Fabricating and Testing Specimens of Ultra-High Performance Concrete. West Conshohocken, PA; ASTM International.URL
6 
ASTM C39/C39M-21 (2021) Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. West Conshohocken, PA; ASTM International.URL
7 
Baite, E., Messan, A., Hannawi, K., Tsobnang, F., and Prince, W. (2016) Physical and Transfer Properties of Mortar Containing Coal Bottom Ash Aggregates from Tefereyre (Niger). Construction and Building Materials 125, 919-926.DOI
8 
Bang, J. W., Ganesh Prabhu, G., Jang, Y. I., and Kim, Y. Y. (2015) Development of Ecoefficient Engineered Cementitious Composites Using Supplementary Cementitious Materials as a Binder and Bottom Ash Aggregate as Fine Aggregate. International Journal of Polymer Science 2015(1), 681051.DOI
9 
Benjamin, A. G. (2006) Material Property Characterization of Ultra-High Performance Concrete. US Department of Transport.URL
10 
Brooks, A. L., Zhou, H., and Hanna, D. (2018) Comparative Study of the Mechanical and Thermal Properties of Lightweight Cementitious Composites. Construction and Building Materials 159, 316-328.DOI
11 
Chindaprasirt, P., Lao-un, J., Zaetang, Y., Wongkvanklom, A., Phoo-ngernkham, T., Wongsa, A., and Sata, V. (2022) Thermal Insulating and Fire Resistance Performances of Geopolymer Mortar Containing Auto Glass Waste as Fine Aggregate. Journal of Building Engineering 60, 105178.DOI
12 
Chung, S. Y., Abd Elrahman, M., Stephan, D., and Kamm, P. H. (2018) The Influence of Different Concrete Additions on the Properties of Lightweight Concrete Evaluated Using Experimental and Numerical Approaches. Construction and Building Materials 189, 314-322.DOI
13 
Dixit, A., Dai Pang, S., Kang, S. H., and Moon, J. (2019) Lightweight Structural Cement Composites with Expanded Polystyrene (EPS) for Enhanced Thermal Insulation. Cement and Concrete Composites 102, 185-197.DOI
14 
González-Torres, M., Pérez-Lombard, L., Coronel, J. F., Maestre, I. R., and Yan, D. (2022) A Review on Buildings Energy Information: Trends, End-Uses, Fuels and Drivers. Energy Reports 8, 626-637.DOI
15 
Hamada, H., Alattar, A., Tayeh, B., Yahaya, F., and Adesina, A. (2022) Sustainable Application of Coal Bottom Ash as Fine Aggregates in Concrete: A Comprehensive Review. Case Studies in Construction Materials 16, e01109.DOI
16 
Ji, G. B., Kim, H. J., and Yang, K. H. (2019) CO2 Emissions and Environmental Impact Assessment of Bottom Ash Aggregate Concrete. Journal of the Korea Concrete Institute 31(5), 485-492. (In Korean)DOI
17 
JSCE (2008) Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks. Tokyo, Japan; Japan Society of Civil Engineers (JSCE). 1-16.URL
18 
Jung, M., Park, J., Hong, S. G., and Moon, J. (2020) Electrically Cured Ultra-High Performance Concrete (UHPC) Embedded with Carbon Nanotubes for Field Casting and Crack Sensing. Materials and Design 196, 109127.DOI
19 
Kang, M. C., Ju, S., Oh, T., Yoo, D. Y., and Pyo, S. (2024) Novel Treatment Method of Coal Bottom Ash for Strain-Hardening Alkali-Activated Composite. Cement and Concrete Composites 151, 105598.DOI
20 
Kim, H. K., and Lee, H. K. (2011) Use of Power Plant Bottom Ash as Fine and Coarse Aggregates in High-Strength Concrete. Construction and Building Materials 25(2), 1115-1122.DOI
21 
Kim, H. K., and Lee, H. K. (2018) Hydration Kinetics of High-Strength Concrete with Untreated Coal Bottom Ash for Internal Curing. Cement and Concrete Composites 91, 67-75.DOI
22 
Kodur, V., Banerji, S., and Solhmirzaei, R. (2020) Effect of Temperature on Thermal Properties of Ultrahigh-Performance Concrete. Journal of Materials in Civil Engineering 32(8), 04020210.DOI
23 
Lee, H. J., Choi, J. S., Yoo, D. Y., and Yoon, Y. S. (2024) Effect of Fiber Hybridization on the Electromagnetic Shielding of UHPFRCC Panel. Journal of Materials Research and Technology 29, 4004-4017.DOI
24 
Lee, N. K., Koh, K. T., Kim, M. O., and Ryu, G. S. (2018) Uncovering the Role of Micro Silica in Hydration of Ultra-high Performance Concrete (UHPC). Cement and Concrete Research 104, 68-79.DOI
25 
Lu, J. X., Ali, H. A., Jiang, Y., Guan, X., Shen, P., Chen, P., and Poon, C. S. (2022) A Novel High-Performance Lightweight Concrete Prepared with Glass-UHPC and Lightweight Microspheres: Towards Energy Conservation in Buildings. Composites Part B: Engineering 247, 110295.DOI
26 
Mahato, J., Yang, J., Lee, N., Kang, H., and Moon, J. (2023) Incorporation of a High Volume of Cenosphere Particles in Low Water-to-Cement Matrix for Developing High Strength and Lightweight Cementitious Composites. Journal of Sustainable Cement-Based Materials 12(5), 580-591.DOI
27 
Mehta, P. K. (2006) Concrete, Microstructure, Properties, and Materials.URL
28 
Muthusamy, K., Rasid, M. H., Jokhio, G. A., Budiea, A. M. A., Hussin, M. W., and Mirza, J. (2020) Coal Bottom Ash as Sand Replacement in Concrete: A Review. Construction and Building Materials 236, 117507.DOI
29 
Pyo, S., and Kim, H. K. (2017) Fresh and hardened properties of ultra-high performance concrete incorporating coal bottom ash and slag powder. Construction and Building Materials 131, 459-466.DOI
30 
Ramírez, C. P., Barriguete, A. V., Somolinos, R. S., del Río Merino, M., Sánchez., and E. A. (2020) Analysis of Fire Resistance of Cement Mortars with Mineral Wool from Recycling. Construction and Building Materials 265, 120349.DOI
31 
Saha, A. K., Sarker, P. K., and Golovanevskiy, V. (2019) Thermal Properties and Residual Strength after High Temperature Exposure of Cement Mortar Using Ferronickel Slag Aggregate. Construction and Building Materials 199, 601-612.DOI
32 
SETRA and AFGC (2002) Ultra High Performance Fiber –Reinforced Concretes- Interim Recommendations (Bétons Fibrés à Ultra-Hautes Performacnes – Recommandations Provisoires), France, Service D’ëtudes Techniques des Routes et Autoroutes (SETRA), Association Française de Génie Civil (AFGC).URL
33 
Singh, M., and Siddique, R. (2014) Strength Properties and Micro-Structural Properties of Concrete Containing Coal Bottom Ash as Partial Replacement of Fine Aggregate. Construction and Building Materials 50, 246-256.DOI
34 
Singh, N., and Bhardwaj, A. (2020) Reviewing the Role of Coal Bottom Ash as an Alternative of Cement. Construction and Building Materials 233, 117276.DOI
35 
Torkittikul, P., Nochaiya, T., Wongkeo, W., and Chaipanich, A. (2017) Utilization of Coal Bottom Ash to Improve Thermal Insulation of Construction Material. Journal of Material Cycles and Waste Management 19, 305-317.DOI
36 
WGBC (2023) Building Materials and the Climate: Constructing A New Future. 12 09 2023 [Online]. World Green Building Council (WGBC). Available: https://wedocs.unep.org/handle/20.500.11822/43293URL
37 
Wongkeo, W., Thongsanitgarn, P., Pimraksa, K., and Chaipanich, A. (2012) Compressive Strength, Flexural Strength and Thermal Conductivity of Autoclaved Concrete Block Made Using Bottom Ash as Cement Replacement Materials. Materials and Design 35, 34-439.DOI
38 
Wu, C., Liu, S., Guo, J., Ma, H., and He, L. (2023) Relationship Between Thermal Conductivity and Compressive Strength of Insulation Concrete: A Review. Journal of Research Updates in Polymer Science 12, 80-96.URL
39 
Wu, Z., Shi, C., He, W., and Wu, L. (2016) Effects of Steel Fiber Content and Shape on Mechanical Properties of Ultra High Performance Concrete. Construction and Building Materials 103, 8-14.DOI
40 
Zeng, Q., Mao, T., Li, H., and Peng, Y. (2018) Thermally Insulating Lightweight Cement-Based Composites Incorporating Glass Beads and Nano-Silica Aerogels for Sustainably Energy-Saving Buildings. Energy and Buildings 174, 97-110.DOI
41 
Zhu, P., Brunner, S., Zhao, S., Griffa, M., Leemann, A., Toropovs, N., Malekos, A., Koebel, MM., and Lura, P. (2019) Study of Physical Properties and Microstructure of Aerogel-Cement Mortars for Improving the Fire Safety of High-Performance Concrete Linings in Tunnels. Cement and Concrete Composites 104, 103414.DOI