Mobile QR Code QR CODE
Export citation EndNote

References

1 
Ahsan, M. M., Mahmud, M. P., Saha, P. K., Gupta, K. D., and Siddique, Z. (2021) Effect of Data Scaling Methods on Machine Learning Algorithms and Model Performance. Technologies 9(3), 52.DOI
2 
Ali, G., Elsayegh, A., Assaad, R., El-Adaway, I. H., and Abotaleb, I. S. (2019) Artificial Neural Network Model for Bridge Deterioration and Assessment. Laval, Quebec; Canadian Society for Civil Engineering (CSCE) Annual Conference. June 12 - 15, 2019URL
3 
Al-Shehari, T., and Alsowail, R. A. (2021) An Insider Data Leakage Detection Using One-Hot Encoding, Synthetic Minority Oversampling and Machine Learning Techniques. Entropy 23(10), 1258.DOI
4 
Berrar, D. (2019) Cross-Validation. Encyclopedia of Bioinformatics and Computational Biology.URL
5 
Choi, Y., Lee, J., and Kong, J. (2020) Performance Degradation Model for Concrete Deck of Bridge Using Pseudo-LSTM. Sustainability 12(9), 3848.DOI
6 
Galen, C., and Steele, R. (2020) Performance Maintenance Over Time of Random Forest-based Malware Detection Models. In 2020 11th IEEE Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), 536-541.DOI
7 
Jeong, Y., Lee, I., and Kim, W. (2024) Deterioration Mechanism and Repair Methods for Concrete Decks in Bridges. Journal of the Korea Concrete Institute 36(4), 347-355. (In Korean)DOI
8 
Lee, J., Min, G., and Kim, W. (2023) Development of Performance Evaluation and Prediction Models for Bridge Components Considering Time Characteristics. Journal of the Korea Concrete Institute 35(6), 673-680. (In Korean)DOI
9 
Lee, Y., Sun, J., and Park, K. (2020) Development of Bridge Deck Pavement Deterioration Prediction. Journal of the Korea Concrete Institute 32(1), 253-254. (In Korean)URL
10 
Li, Z., and Burgueño, R. (2019) Structural Information Integration for Predicting Damages in Bridges. Journal of Industrial Information Integration 15, 174-182.DOI
11 
Lim, S., and Chi, S. (2019) Xgboost Application on Bridge Management Systems for Proactive Damage Estimation. Advanced Engineering Informatics 41(6):100922.DOI
12 
Lim, S., and Chi, S. (2021) Damage Prediction on Bridge Decks Considering Environmental Effects with the Application of Deep Neural Networks. KSCE Journal of Civil Engineering 25(2), 371-385.DOI
13 
Miao, P., Yokota, H., and Zhang, Y. (2023) Deterioration Prediction of Existing Concrete Bridges Using a LSTM Recurrent Neural Network. Structure and Infrastructure Engineering 19(4), 475-489.DOI
14 
Python Software Foundation. (2024) Python 3.13.0. https://docs.python.org/3/URL
15 
Raschka, S. (2018) Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. arXiv:1811.12808.DOI
16 
Rashidi Nasab, A., and Elzarka, H. (2023) Optimizing Machine Learning Algorithms for Improving Prediction of Bridge Deck Deterioration: A Case Study of Ohio Bridges. Buildings 13(6), 1517.DOI
17 
Srikanth, I., and Arockiasamy, M. (2020) Deterioration Models for Prediction of Remaining Useful Life of Timber and Concrete Bridges: A Review. Journal of Traffic and Transportation Engineering (English edition) 7(2), 152-173.DOI
18 
Swana, E. F., Doorsamy, W., and Bokoro, P. (2022) Tomek Link and Smote Approaches for Machine Fault Classification with an Imbalanced Dataset. Sensors 22(9), 3246.DOI
19 
Zhu, M., Wang, J., Yang, X., Zhang, Y., Zhang, L., Ren, H., Wu, B., and Ye, L. (2022) A Review of the Application of Machine Learning in Water Quality Evaluation. Eco- Environment and Health 1(2), 107-116.DOI