Mobile QR Code QR CODE
Export citation EndNote

References

1 
ASTM C 1202 (2019) Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride ion Penetration. West Conshohocken, PA; ASTM International.URL
2 
Cao, V. D., Pilehavar, S., Brings, C. S., Szczotok, A. M., Rodriquez, J. F., Carmona, M., Manasir, N. A., and Kjoniksen, A. L. (2017) Microencapsulated Phase Change Materials for Enhancing the Thermal Performance of Portland Cement Concrete and Geopolymer Concrete for Passive Building Applications. Energy Conversion and Management 133, 56-66.DOI
3 
Chi, L., Lu, S., Li, Z., Huang, C., Jiang, H., and Peng, B. (2023) Recycling of Ferronickel Slag Tailing in Cementitous Materials: Activation and Performance. Science of The Total Environment 861.DOI
4 
Choi, S. J., Bae, S. H., Ji, D. M., and Kim, S. H. (2022b) Effects of Capsule Type on the Characteristics of Cement Mortars Containing Powder Compacted Capsules. Materials 15(19), 6773.DOI
5 
Choi, S. J., Bae, S. H., Lee, J. I., Bang, E. J., Choi, H. Y., and Ko, H. M. (2022a) Effect of Bio-Inspired Polymer Types on Engineering Characteristics of Cement Composites. Polymers 14(9), 1808.DOI
6 
Christiopher, C. G., Gopal, R., Sadasivam, S., Esakki, A. K. D., and Kumar, P. D. (2023) Experimental Toughness and Durability Evaluation of FRC Composite Reinforced with Steel–Polyester Fiber Combination. International Journal of Concrete Structures and Materials 17, 39.DOI
7 
Fu, Q., Zhang, Z., Xu, W., Zhao, X., Zhag, L., Wang, Y., and Niu, D. (2022) Flexural Behavior and Perdiction Model of Basalt Fiber/Polyperopylene Fiber-Reinforced Concrete. International Journal of Concrete Structures and Materials 16, 31.DOI
8 
Grutaert, E., Heede, P. V. D., and Belie, N. D. (2013) Carbonation of Slag Concrete: Effect of the Cement Replacement Level and Curing on the Carbonation Coefficient-Effect of Carbonation on the Pore Structure. Cement and Concrete Composites 35(1), 39-48.DOI
9 
Guinea, G. V., El-Sayed, K., Rocco, C. G., Elices, M., and Planas, J. (2002) The Effect of the Bond Between the Matrix and the Aggregates on the Cracking Mechanism and Fracture Parameters of Concrete. Cement and Concrete Research 32(12), 1961-1970.DOI
10 
Gupta, S., Pang, S. D., and Kua, H. W. (2017) Autonomous Healing in Concrete by Bio-Based Healing Agents - A review. Construction and Building Materials 146, 419-428.DOI
11 
He, J., and Shi, X. (2017) Developing an Abiotic Capsule-Based Self-Healing System for Cementitious Materials: The State of Knowledge. Construction and Building Materials 156, 1096-1113.DOI
12 
Huang, H., Ye, G., and Damidot, D. (2014) Effect of Blast Furnace Slag on Self-Healing of Microcracks in Cementitious Materials. Cement and Concrete Research 60, 68-82.DOI
13 
Huang, Y., Wang, Q., and Shi, M. (2017) Characteristics and Reactivity of Ferronickel Slag Powder. Construction and Building Materials 156(15), 773-789.DOI
14 
Indhumathi, S., Dinesh, A., and Pichumani, M. (2022) Diverse Perspectives on Self-Healing Ability of Engineered Cement Composite - All-Inclusive Insight. Construction and Building Materials 323, 126473.DOI
15 
Kan, L., Lv, J., Duan, B., and Wu, M. (2019) Self-Healing of Engineered Geopolymer Composites Prepared by Fly Ash and Metakaolin. Cement and Concrete Research 125, 105895.DOI
16 
KATS (2017) Testing Method for Comrpessive Strength of Hydraulic Cement Mortars (KS L 5105). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)URL
17 
KATS (2020) Standard Test Method for Accelerated Carbonation of Concrete (KS F 2584). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA), 1-4. (In Korean)URL
18 
KATS (2021) Standard Test Method for Tensile Splitting Strength of Concrete (KS F 2423). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Stadard Association (KSA). 1-4. (In Korean)URL
19 
KATS (2023) Testing Method for Velocity of Ultrasonic Pulses to Conclude Compressive Strength of Concrete (KS F 2731). Seoul, Korea: Korea Agency for Technology and Standards (KATS), Korea Standard Association (KSA). (In Korean)URL
20 
KCI (2021) Constant Water Head Permeability Test Method for the Evaluation of Self-Healing Performance of Mortar (KCI-CT114). Seoul, Korea; Korea Concrete Institute (KCI). (In Korean)URL
21 
Kim, S. H., Lee, W. J., Choi, S., and Lee, K. M. (2022b) Compressive Strength and Healing Performance of Mortar Using Self-Healing Inorganic Materials. Journal of the Korean Recycled Construction Resources Institute 10(4), 577-583. (In Korean)URL
22 
Kim, Y. J., Choi, Y. W., and Oh, S. R. (2022a) A Study on the Healing Performance of Solid Capsules for Crack Self-Healing of Cementitious Composites. Crystals 12(7):993.DOI
23 
Lee, J. I., Kim, C. Y., and Choi, S. J. (2022) An Experimental Study on Engineering Properties of Self-healing Mortar according to PCC(Powder Compacted Capsule) Size and Mixing Ratio. Journal of the Korean Recycled Construction Resources Institute 10(4). 514-522. (In Korean)URL
24 
Lee, J. I., Kim, C. Y., Yoon, J. H., and Choi, S. J. (2023) Effect of Cementitious Materials on Compressive Strength and Self-Healing Properties of Cement Mortars Containing Chitosan-Based Polymer. Architectural Research 25(3), 53-59.DOI
25 
Leticia, A. C., Mayara, W., Ian, C. A. E., and Ronaldo, A. M. J. (2019) Monitoring the Self-healing of Concrete from the Ultrasonic Pulse Velocity. Journal of Composites Science 3(1), 16.DOI
26 
Lin, Y. C., Lin, Y., and Chan, C. C. (2016) Use of Ultrasonic Pulse Velocity to Estimate Strength of Concrete at Various Ages. Magazine of Concrete Research 68(14), 739-749.DOI
27 
Liu, J., Doh, J. H., Dinh, H. L., Ong, D. E. L., Zi, G., and You, I. (2022) Effect of Si/Al Molar Ratio on the Strength Behavior of Geopolymer Derived from Various Industrial Waste: A Current State of the Art Review. Construction and Building Materials 329, 127134.DOI
28 
Liu, J., Ou, G., Qiu, Q., Chen, X., Hong, J., and Xing, F. (2017) Chloride Transport and Microstructure of Concrete with/ Without Fly Ash under Atmospheric Chloride Condition. Construction and Building Materials 146, 493-501.DOI
29 
Liu, X., Xie, X., Liu, R., Lyu, K., Wang, X., Yu, J., Fu, F., Wu, C., and Zuo, J. (2023) Manufacture of Alkali-Activated Cementitious Materials Using Municipal Solid Waste Incineration Fly Ash (MSWIFA): The Effect of the Si/Al Molar Ratio on Fresh and Hardened Properties. Construction and Building Materials 392, 131848.DOI
30 
Luhar, S., and Gourav, S. (2015) A Review Paper on Self-Healing Concrete. Journal of Civil Engineering Research 5(3), 53-58.URL
31 
Maria, K., Dimitrios, G. B., Kyriaki, T., Dimitrios, G. B., Kyriaki, T., Dimitrios, B., Dimitrios, T. V. T., Savvas, O., Georgios, P., and Alkiviadis, S. P. (2019) Microcapsule-Based Self- Healing materials: Healing Efficiency and Toughness Reduction vs. Capsule Size. Composites Part B: Engineering 171, 78-86.DOI
32 
Pilehvar, S., Cao, V. D., Szcaotok, A. M., Valaentini, L., Salvioni, D., Magistri, M., Pamies, R., and Kjoniksen, A.L. (2017) Mechanical Properties and Microscale Changes of Geopolymer Concrete and Portland Cement Concrete Containing Micro-Encapsulated Phase Change Materials. Cement and Concrete Research 100, 341-349.DOI
33 
Pipat, T., Toyoharu, N., Yoichi, Y., and Toshiki, S. (2009) Self-healing Ability of Fly-Ash Cement Systems. Cement and Concrete Composites 31(3), 195-203.DOI
34 
Prang, S. A., Nobukazu, N., Satoshi, F., and Shigeyuki, D. (2022) Evaluation of the Prediction and Durability on the Chloride penetration in Cementitious materials with Blast Furnace Slag as Cement Addition. Construction Materials 2(1), 53-69.DOI
35 
Qian, C., Zheng, T., Zhang, X., and Su, Y. (2021) Application of Microbial Self-Healing Concrete: Case Study. Construction and Building Materials 290, 123226.DOI
36 
Rivera, R. A., Sanjuan, M. A., Martin, D. A., and Costafreda, J. L. (2021) Performance of Ground Granulated Blast-Furnace Slag and Coal Fly Ash Ternary Portland Cements Exposed to Natural Carbonation. Materials 14(12), 3239.DOI
37 
Shi, K., Deng, H., Hu, J., Zhou, J., Cai, X., and Liu, Z. (2023) Effects of Steel Slag Powder Content and Curing Condition on the Performance of Alkali-Activated Materials Based UHPC Matrix. Materials 16(10), 3875.DOI
38 
Shiming, S., and Yupu, S. (2013) Dynamic Biaxial Tensile- Compressive Strength and Failure Criterion of Plain Concrete. Construction and Building Materials 40, 322-329.DOI
39 
Sun, J., Kong, K. H., Lye, C. Q., and Quek, S. T. (2022) Effect of Ground Granulated Blast Furnace Slag on Cement Hydration and Autogenous Healing of Concrete. Construction and Building Materials 315, 125365.DOI
40 
Taheri, S., and Clark, S, M. (2021) Preparation of Self-healin Additives for Concrete via Minermulstion Polymerization: Formulation and Production Challenges. International Journal of Concrete Structures and Materials 15, 8.DOI
41 
Wang, R., Hu, Z., Li, Y., Wang, K., and Zhang, H. (2022) Review on the Deterioration and Approaches to Enhance the Durability of Concrete in the Freeze-Thaw Environment. Construction and Building Materials 321, 126371.DOI
42 
Yoon, H. S., Lee, J. Y., Yang, K. H., and Park, S. H. (2022) Evaluation of the Crack Healing Efficiency of Mortar Incorporating Self-healing pellets based on Cementitious Materials. Journal of the Architectural Institute of Korea 38(4), 207-215. (In Korean)DOI
43 
Yoon, H., Kim, Y. J., Kim, H. S., Kang, J. W., and Koh, H. M. (2017) Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors. Sensors 17(8), 1817.DOI
44 
Zhang, D., Wang, X., Kang, S., Cheng, G., and Wu, W. (2023) The Effect of Slag and Fly Ash Content on the Properties of Electric Furnace Nickel Slag-Based Geopolymer Used for Repair Materials. Case Studies in Construction Materials 19, e02284.DOI
45 
Zhang, W., Zheng, Q., Ashour, A., and Han. B. (2020) Self- Healing Cement Concrete Composites for Resilient Infrastructures: A Review. Composites Part B: Engineering 189, 107892.DOI